Activity-induced changes in synaptic release sites at the crayfish neuromuscular junction.
نویسندگان
چکیده
Crustacean motor axons provide a model in which activity-dependent changes in synaptic physiology and synaptic structure can be concurrently observed in single identifiable neurons. In response to a train of stimulation, crustacean neuromuscular junctions undergo pronounced facilitation of transmitter release. The effects of maintained high-frequency stimulation may persist for at least several hours ("long-term facilitation"). Electrophysiological studies suggest that the number of "active" synapses contributing transmitter quanta at low frequencies of stimulation increases during and after a train of high-frequency stimulation. However, at different terminal recording sites the effect of stimulation varies, and it was observed that not all released quanta produce a voltage change in the postsynaptic muscle cell. Electron microscopic examinations of serial sections from nerve terminals subjected to stimulation were made to determine whether changes in synaptic structure could be correlated with activity-induced long-lasting enhancement of transmission. A procedure was introduced for marking a recorded terminal with fluorescent polystyrene microspheres, which are visible in electron micrographs of the recording site. Crustacean nerve terminals possess a large number of discrete synapses, a small fraction of which have multiple presynaptic "active zones" (dense bodies with clustered synaptic vesicles, thought to represent sites of evoked transmitter release). In terminals previously stimulated, the proportion of synapses with multiple "active zones" is greater than in control unstimulated terminals. Total synaptic vesicle counts and readily releasable vesicles at synapses are not significantly different in previously stimulated terminals and controls. In terminals fixed during stimulation a few synapses show evidence of division in "active zones," and synaptic vesicle counts are lower than in controls.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Presynaptic long-term facilitation at the crayfish neuromuscular junction: voltage-dependent and ion-dependent phases.
Long-term facilitation (LTF) of synaptic transmission was investigated in the crayfish opener muscle to determine the factors necessary for its induction and expression. LTF was induced without action potentials by intracellular depolarization of presynaptic nerve terminals. Following induction, the synaptic transmission was enhanced by about 80% for a period of several hours. Intracellular rec...
متن کاملQuantal measurement and analysis methods compared for crayfish and Drosophila neuromuscular junctions, and rat hippocampus.
Quantal content of transmission was estimated for three synaptic systems (crayfish and Drosophila neuromuscular junctions, and rat dentate gyrus neurons) with three different methods of measurement: direct counts of released quanta, amplitude measurements of evoked and spontaneous events, and charge measurements of evoked and spontaneous events. At the crayfish neuromuscular junction, compariso...
متن کاملRole of a-SNAP in Promoting Efficient Neurotransmission at the Crayfish Neuromuscular Junction
He, Ping, R. Chase Southard, Dong Chen, S. W. Whiteheart, and R. L. Cooper. Role of a-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction. J. Neurophysiol. 82: 3406–3416, 1999. In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (aSNAP) in synaptic transmission at the neuromuscular junction of the crayfish ...
متن کاملThe effects of ethanol on pre-synaptic components of synaptic transmission in a model glutamatergic synapse: the crayfish neuromuscular junction.
We have elucidated some of the mechanisms by which ethanol (EtOH) reduces synaptic efficacy at model glutamatergic synapses. The crayfish phasic and tonic neuromuscular junctions are superb models for directly assessing the effects of EtOH on pre-synaptic components of synaptic transmission. The ability to perform quantal analysis of synaptic transmission has allowed us to assess pre-synaptic a...
متن کاملRole of alpha-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction.
In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (alpha-SNAP) in synaptic transmission at the neuromuscular junction of the crayfish opener muscle. Immunochemical methods confirm the presence of alpha-SNAP in these preparations and show that it is concentrated in the synaptic areas. Microinjection and electrophysiological studies show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 6 شماره
صفحات -
تاریخ انتشار 1994